
LLNL-CONF-670941

Experiences of Using the OpenMP
Accelerator Model to Port DOE Stencil
Applications

P. Lin, C. Liao, D. Quinlan, S. Guzik

May 18, 2015

International Workshop on OpenMP
Aachen, Germany
October 1, 2015 through October 2, 2015

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

Experiences of Using the OpenMP Accelerator
Model to Port DOE Stencil Applications

Pei-Hung Lin1, Chunhua Liao1, Daniel J. Quinlan1, and Stephen Guzik2

1 Lawrence Livermore National Laboratory
2 Colorado State University

Abstract. The Department Of Energy (DOE) has a wide range of
large-scale, parallel scientific applications running on cutting-edge High-
Performance Computing (HPC) systems to support its mission and tackle
critical science challenges. A recent trend in these HPC systems is to add
commodity accelerators, such as Nvidia GPUs and Intel Xeon Phi co-
processors, into computer nodes so we can achieve increased performance
without exceeding the limited power budget. However, it is well-known
in the HPC community that porting existing applications to accelerators
is a difficult task given the numerous unique hardware features and the
complexity of software.
In this paper, we share our experiences of using the OpenMP Accelera-
tor Model to port two DOE stencil applications to exploit Nvidia GPUs.
Introduced as part of the OpenMP 4.0 specification, the OpenMP accel-
erator model provides a set of directives for users to specify semantics
related to accelerators so that compilers and runtime systems can au-
tomatically handle repetitive and error-prone accelerator programming
tasks, including code transformations, work scheduling, data manage-
ment, reduction, and so on. Using a prototype compiler implementation
based on the ROSE source-to-source compiler framework, we report the
problems we encountered during the porting process, our solutions, and
the obtained performance. Productivity is also evaluated. Our experi-
ences show that the existing OpenMP Accelerator Model can effectively
help programmers leverage accelerators. However, complex data types
and non-canonical control structures can pose challenges for program-
mers to productively apply accelerator directives.

1 Introduction

The Department of Energy (DOE) has a wide range of large-scale, parallel sci-
entific applications to support its mission and tackle critical research and de-
velopment challenges in multiple science disciplines. Many of these scientific

This work was performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This
work was also supported by the National Science Foundations Computer Research
Infrastructure program under Award No. CNS-1205708.

2 Pei-Hung Lin, Chunhua Liao, Daniel J. Quinlan, and Stephen Guzik

applications have a lifespan of multiple decades so it is essential to port them
to current mainstream high-performance computing (HPC) systems deployed
in DOE in a timely fashion. A recent trend in the HPC systems [2] is to add
commodity accelerators, such as Nvidia GPUs and Intel Xeon Phi coprocessors,
into computer nodes so we can achieve increased performance within a limited
power budget. However, it is well-known in the HPC community that porting
existing applications to accelerators is a difficult task given the numerous unique
hardware features of accelerators and the complexity of software.

Although low-level programming models, such as CUDA [3] and OpenCL [10],
can often help deliver competitive performance for given applications, they are
not productive solutions to port large-scale parallel applications due to the re-
quired radical and comprehensive changes to the original source code. On the
other hand, high-level programming models such as OpenMP 4.0 [14] and Ope-
nACC [5] provide language annotations, in the form of directives and clauses, for
users to incrementally specify semantics related to how to port to an accelerator.
Compilers and runtime systems then automatically take care of repetitive and
error-prone code transformation, thread scheduling, data management, and so
on. Therefore, it is more productive for users to use high-level directive-based
programming models to test the feasibility and profitability of using accelerators.

The OpenMP Accelerator Model, introduced as part of the OpenMP 4.0
specification, is a representative high-level directive-based programming model
aimed to simplify the programming for accelerators. It assumes a computation
node as a host device connected with one or more accelerators as target devices.
Each device has its own memory space though it is allowed to have shared stor-
age among multiple devices. The execution model is host-centric: a host device
“offloads” data and code regions to accelerators for execution, but the accelera-
tors do not initiate communication with hosts. A set of directives, environment
variables, and runtime library routines are provided to specify semantics related
to managing computation and data between the host and target devices.

In a previous study [12], we created a prototype compiler for the OpenMP
Accelerator Model and obtained an early impression of its expressiveness, im-
plementation, and performance. In this paper, we extend our work by applying
the model to port two non-trivial DOE scientific applications: lattice-Boltzmann
method and Compressible Navies-Stokes equation. Both applications conduct
a stencil computation, an important category of scientific computing done in
DOE facilities. However, they represent a spectrum of stencil applications by
their difference in stencil sizes. Our goal is to discover problems developers may
face when using the OpenMP Accelerator Model to port real applications. We
also share our solutions to the problems, including suggestions to improvements
to the programming model itself. Our contributions include: 1) providing the first
study of using the OpenMP Accelerator Model in OpenMP 4.0 to port non-trivial
scientific applications, 2) illustrating the obstacles for porting real applications
and possible solutions and workarounds, and 3) suggesting improvements, in-
cluding new language features, of the OpenMP Accelerator Model to increase
expressiveness and performance for accelerators,

Experiences of OpenMP Accelerator for DOE Stencil Applications 3

The remainder of this paper is organized as follows. Section 2 gives an
overview of the accelerator support in the OpenMP 4.0 specification. Section 3
describes the two chosen applications. Porting experiences are given in Section 4,
including details for baseline performance, performance analysis, and optimized
versions. Section 5 summarizes related work. Finally, discussion and future work
in Section 6.

2 OpenMP 4.0’s Accelerator Support

OpenMP is a representative high-level directive-based programming model orig-
inally designed to address shared-memory programming. Starting from OpenMP
4.0, it has a set of language directives and runtime routines aimed at simplifying
the programming for accelerators. Collectively, the accelerator support is often
called the OpenMP Accelerator Model. The OpenMP accelerator model assumes
that a computation node has a host device connected with one or multiple accel-
erators as target devices (shown in Figure 1). A target device, which can be any
logical execution engine defined by an implementation, has threads that behave
almost the same as threads on the host device. The OpenMP memory model is
extended so that the code region has its own data environment. A device appears
to have an independent memory, although it is allowed to share memory among
devices.

Shared storage

Host Device

 Proc. Proc. Proc. Proc.

Target Device

 Proc. Proc. Proc. Proc.

OpenMP threads

Host Memory Device Memory

… …

… …

Fig. 1: Devices and memory in OpenMP 4.0

The execution model is host-centric: a host device “offloads” data and code
regions to accelerators for execution, but the accelerators do not initiate commu-
nication with hosts. In particular, the target construct is introduced for specifying
a computation and the associated data to be offloaded to a device. Initially, only
a single thread starts on a device to run an implicit task region. This single
thread can fork more threads later when it encounters parallel constructs. It
can also generate tasks, as can its CPU counterpart. Data-mapping attributes,
specified using the map clause, define how variables are handled for the device
data environments, including allocation, initialization and assignment to the host

4 Pei-Hung Lin, Chunhua Liao, Daniel J. Quinlan, and Stephen Guzik

variables at the end of a device data environment. Data mapping often involves
data movement as host and device are commonly in different memory spaces
in modern accelerator architectures. To avoid repetitive creation and cancella-
tion of device data environments, the target data directive defines a device data
region, in which multiple target regions can share the same device data.

Figure 2 shows a Jacobi iteration kernel written using the OpenMP acceler-
ator model. One directive (line 6 and 7 of Figure 2) converts the existing host
OpenMP code to device code. Since a target region can run on a host device
whenever an implementation chooses, programmers should generally write a host
version before adding accelerator-specific directives.

1 #pragma omp target data map(to:n, m, omega , ax, ay, b, f[0:n][0:m]) \

2 map(tofrom:u[0:n][0:m]) map(alloc:uold [0:n][0:m])

3 while ((k<=mits)&&(error >tol))

4 {

5 // a "target + parallel for" loop copying u to uold is omitted ...

6 #pragma omp target map(to:n, m, omega , ax , ay, b, f[0:n][0:m], \

7 uold [0:n][0:m]) map(tofrom:u[0:n][0:m])

8 #pragma omp parallel for private(resid ,j,i) reduction (+: error)

9 for (i=1;i<(n-1);i++)

10 for (j=1;j<(m-1);j++)

11 {

12 resid = (ax*(uold[i-1][j] + uold[i+1][j])\

13 + ay*(uold[i][j-1] + uold[i][j+1])+ b * uold[i][j] - f[i][j])/b;

14 u[i][j] = uold[i][j] - omega * resid;

15 error = error + resid*resid ;

16 } // the rest code omitted ...

17 }

Fig. 2: Jacobi example

Accelerators are often massively parallel architecture devices that support
hundreds or even thousands of concurrent threads with a hierarchical organiza-
tion. For example, CUDA provides the hierarchy of threads in blocks and grids.
OpenMP 4.0 provides the teams and distribute constructs to manage a two-level
thread hierarchy. teams creates a league of thread teams, and the master thread
of each team executes the region. distribute is closely nested in a teams region
to share work among master threads of teams. Other features in the OpenMP
accelerator model include a target update directive to make specified items in the
device data environment consistent with their original list items, a target declare
directive to specify that variables or functions to be mapped to a device, some
combined constructs to simplify the programming, and an environment variable
(OMP DEFAULT DEVICE) to indicate the default device number, and a set of
runtime library routines to set and detect information related to accelerators.

3 Applications

In this paper, we chose two stencil applications, one using the lattice-Boltzmann
method (LB) and the other solving the compressible Navier-Stokes equation
(CNS). Stencil computations are used in many large DOE scientific applications
to solve partial differential equations on structured grids. The chosen LB and

Experiences of OpenMP Accelerator for DOE Stencil Applications 5

CNS algorithms have very different stencil sizes (zero-point vs. 25-point) leading
to different computational characteristics. The LB method operates in a stream-
ing mode; memory is read once to perform the computation in the zero-point
grid site. In the CNS method, memory from a grid site is repeatedly used in
all the stencils that include that grid site. Hence, effective caching is extremely
important. The performance of the LB algorithm is often limited by bandwidth
whereas the performance of the CNS algorithm is often limited by arithmetic
resources. These different characteristics can lead to different implementation
strategies when porting the applications to a GPU device. We list a high level
comparison between two applications in Table 1 and presents details in the fol-
lowing.

Table 1: Comparison between LB and CNS applications
Language AMR library Stencil components # # lines in codes

LB C++ Chombo 0-point 19 4670 (12879 w/ Chombo code)

CNS Fortran90 BoxLib
9-point in 1D

11 1242 (25967 w/ BoxLib code)
25-point in 3D

3.1 Lattice-Boltzmann Method (LB)

In the lattice-Boltzmann method, hydrodynamics are described by a discrete
kinetic equation for a single-particle distribution function [6],

fi(j + ei∆t, t+∆t) = f̂i(j, t)︸ ︷︷ ︸
Streaming

= fi(j, t) + Lik

(
fk(j, t)− feq

k (j, t)
)︸ ︷︷ ︸

Collision

. (1)

The chosen LB application uses Chombo [7], a parallel adaptive mesh refinement
(AMR) library used to solve partial differential equations. The domain size se-
lected in the experiment is a 643 Cartesian grid structure partitioned into boxes,
each of size 323. A total of 8 boxes cover the problem domain and 8000 time
steps are performed in a single experiment. Fig. 3a shows the pseudo code for
the LB computation. In the experimental setup, a loop in the application iter-
ates over 8 boxes and performs computations to update the grid cells in each
box (represented in line 8). Parallelization can be applied to the loop over boxes
(line 8) or loops over grid cells (line 11 and line 16). Multi-level parallelization
is feasible only if it is supported in the implementation.

3.2 Compressible Navier-Stokes Equations With Constant Viscosity
And Thermal Conductivity (CNS)

The CNS algorithm is based on finite-difference methods and the equations are:

∂ρ

∂t
+∇ · (ρu) = 0, (2)

∂ρu

∂t
+∇ · (ρuu) +∇p = ∇ · τ , (3)

∂ρE

∂t
+∇ · [(ρE + p)u] = ∇ · (λ∇T) +∇ · (τ · u), (4)

6 Pei-Hung Lin, Chunhua Liao, Daniel J. Quinlan, and Stephen Guzik

where ρ is the density, u is the velocity, p is the pressure, E is the specific energy
density (kinetic energy plus internal energy), τ is the viscous stress tensor, λ is
the thermal conductivity, and T is the temperature.

The problem domain in CNS is represented by BoxLib [1], an AMR library
very similar to Chombo. As for the LB case, the domain size is 643 and par-
titioned into “Fabs” (Fortran array box), each of size 323. 50 time steps are
performed and 5 output files are generated during the computation. An outer
loop iterates over all available Fabs in the multi-Fab data structure (shown in
line 5 in Fig. 3b). Similar to the LB, multi-level parallelization is applicable if it
is supported in the implementation.

1 fi(cells , 19, boxes) = initial data;
2 fiUpdate(cells , 19, boxes) = 0;

3 U(grid , 4, boxes);

4 Macroscopic(U, fi);

5 for (int iTS = 0; iTS != nTimeStep; ++iTS)

6 {

7 int iBox;

8 for (every box)
9 {

10 { // Advance function

11 for (every cell)
12 Collision(fi, U);

13 Exchange(fi);

14 BC(fi);

15 Stream(fiUpdate , fi);

16 for (every cell)
17 Macroscopic(U, fiUpdate);

18 swap(fi , fiUpdate);

19 }

20 }

21 }

(a) LB algorithm pseudo-code

1 init_data(U, dx, prob_lo , prob_hi)

2 for (int iTS = 0; iTS != nTimeStep; ++iTS)

3 {

4 int iFab;

5 for (every Fab)
6 { // Advance function

7 for (1/3 timestep)
8 {

// Advance 1/3 of timestep in each iter.

9 for (every grid cell)
10 ctoprim(Unew , Q);

11 for (every grid cell)
12 diffterm(Q, D);

13 for (every grid cell)
14 hypterm(Q, F);

15 }

16 }

17 }

(b) CNS application pseudo-code

4 Porting to GPUs

In this section, we describe the platform we target, the porting steps, and per-
formance evaluation. Our porting process starts with obtaining baseline perfor-
mance of OpenMP versions of the applications. Guided by performance analysis,
we then incrementally add additional accelerator directives and clauses to show
programming effort and performance impact. In particular, we experiment with
directives and clauses for data reuse, loop collapsing, loop scheduling and hier-
archical thread mapping. We further experiment with a new clause to test the
idea of exploiting special caches on GPUs.

4.1 Hardware and Software Configurations

The hardware platform we target has 132 GB of system memory and two
8-core Intel E5-2670 CPUs. The GPU system has two Nvidia K20X GPUs
with 2688 GPU cores and 3.5 CUDA compute compatibility. We use a pro-
totype implementation of the OpenMP Accelerator Model, HOMP (Heteroge-
neous OpenMP) [12], which is built on the ROSE [15] source-to-source compiler

Experiences of OpenMP Accelerator for DOE Stencil Applications 7

infrastructure developed at Lawrence Livermore National Laboratory. Leverag-
ing ROSE’s flexibility to experiment with new language extensions, HOMP adds
the OpenMP accelerator support [12], including parsing and code transforma-
tions for target, target data, map and so on. HOMP generates CUDA code for
the growing demands in GPU programming. The original OpenMP runtime li-
brary (referred to as XOMP) for ROSE has been extended to support thread
configuration, loop scheduling, data management, reduction and many other re-
quired operations on GPUs. The GNU Compiler Collection (gcc-4.4.6) was used
to compile the software with optimization flags -O3 and -fopenmp. Nvidia 6.0
SDK and nvcc compiler are used for the CUDA support on the GPU platform.
The Nvidia Visual Profiler [4] is used to conduct performance analysis and guide
our optimization strategies.

4.2 Baseline performance on CPU

We take the parallel CPU performance as a baseline to compare results from
different GPU implementations. The CPU testing platform can support up to
16 hardware threads for the parallel execution. Classic OpenMP directives for
CPUs are inserted into the source code to parallelize loop computations.

The default setup in the LB application has OpenMP directives inserted into
the loop for boxes (line 8 in Fig. 3a). We assign at most 8 OpenMP threads
to update the 8 boxes in the loop. Each OpenMP thread will then update 323

cells inside a box, a strategy that works well for boxes of this size [13]. The
OpenMP parallel region terminates at the end of the loop to from an implicit
synchronous barrier between time steps. Fig. 4a shows the CPU’s serial and
parallel performance. The parallel execution with 8 parallel OpenMP threads
delivers a 6.76× speedup compared to the serial execution on Intel E5-2670
CPU.

The CNS application by default has OpenMP directives at the loops for grid
cells (line 9, 11, and 13 in Fig. 3b). The loops in the source code are 3-level nested
loops that iterate through the cubical structure in a Fab. The whole application
consists 14 such OpenMP parallel loops. In the configured testing case, loop
iterations in the outermost loop are evenly distributed into 8 OpenMP threads
for 8 boxes. Fig. 4b shows the comparison between serial and parallel execution
using 8 threads. The parallel execution delivers 5.42× speedup on the testing
machine.

4.3 Baseline performance on GPU

Before performing the porting, we evaluated both applications and discovered
a few obstacles to adding OpenMP accelerator directives. We had to modify
a subset of code from both applications to make the porting feasible. For ex-
ample, we used a Fortran-to-C translator implemented in ROSE to translate
the computation-intensive functions in the CNS into C language versions for the
porting. In the LB application, several variables used in the target loops are not
mappable by the OpenMP 4.0 specification because they are part of other C++

8 Pei-Hung Lin, Chunhua Liao, Daniel J. Quinlan, and Stephen Guzik

(a) LB baseline performance on CPU (b) CNS baseline performance on CPU

Fig. 4: CPU baseline performance compared to CPU serial performance

class objects. We copied those variables to temporary independent variables and
mapped the temporary variables as a workaround in this study.

The baseline implementations on the GPU simply try to reuse the OpenMP
parallel directives without any optimization involved. Minimal OMP target and
OMP map directives are used to identify the target region and data to be mapped
onto the device.

For the LB application, the location of OpenMP directives in the CPU im-
plementation (line 8 in Fig. 3a) is not an ideal start locations for the GPU
implementation since it contains multiple kernels in the loop body. Using an
incremental approach, we decided to port individual kernels first. We therefore
moved the OpenMP directives to the locations of loops to the grid cells inside
Collision, Macroscopic and Stream functions (shown at line 11, 15 and 16 in
Fig. 3a). These three functions consume the majority of execution time (47% in
Collision, 40% in Stream and 7% in Macroscopic) on the parallel CPU execution.
The GPU baseline implementation for CNS application has OpenMP directives
inserted into one loop in the ctoprim function, three loops in the hypterm func-
tion, and 7 loops in the diffterm function. Those are the same locations that
have OpenMP directives in the parallel CPU implementation. Diffterm function
takes the most (34%) portion of total execution in the CNS application. Hypterm
and ctoprim take 24% and 13% respectively.

The baseline GPU performance in both applications were not competitive
compared to their corresponding CPU version performance (shown in Fig. 5 and
Fig. 6). After inspection withe the Nvidia Visual Profiler [4], we found that the
baseline GPU implementations have extremely low achieved GPU occupancy
(< 2%). This is due to the nested loops, identified by the OpenMP directive,
which have only small loop iteration sizes in their outermost loop. The translated
CUDA codes exploit at most 40 GPU threads to perform the computation and
result in low parallelism and performance. The next step in porting is to improve
the GPU utilization by increasing the parallelism.

4.4 Increasing Parallelism

Achieving high parallelism is the key for a GPU device to get high computing
performance. In addition to optimizing applications for high parallelism, the

Experiences of OpenMP Accelerator for DOE Stencil Applications 9

Fig. 5: LB performance on GPU

Fig. 6: CNS performance on GPU

porting process needs to take into account that the maximum parallelism in the
real execution is subject to certain CUDA limitations. These are the limitations
for K20X GPU used in this paper.

– At most 1024 threads in a thread block.
– At most 64 warps (32 threads/warp) in a SMX.
– A thread can have up to a 63 register usage.
– Each SM has up to 48 KB shared memory shared by multiple thread blocks.

There are two feasible approaches to increasing parallelism for the chosen ap-
plications. We describe the two approaches with a performance study in this
section.

loop collapsing Loop collapsing is a transformation that converts multiple per-
fectly nested loops into a single loop. Compared to the original outermost loop,
the collapsed loop has a larger iteration size with potential to expose higher par-
allelism. The directive #pragma omp for collapse (n) locates the outermost loop
and specifies the number of perfectly nested loops to be collapsed. However, loop
structure in the LB application has statements between the nested loops and does
not form a perfectly nested loop. Collapsing non-perfectly nested loops is not
allowed by the OpenMP specification. After reviewing the nested loop structure,

10 Pei-Hung Lin, Chunhua Liao, Daniel J. Quinlan, and Stephen Guzik

we manually moved statements between loops in LB application into the inner-
most loop body since this change causes no side effect and can form a perfectly
nested loop. After collapsing, we can have two different parallel executions on
322 iterations by collapsing two innermost loops, or 323 iterations by collapsing
all loops in the example. Therefore, more GPU threads can be assigned to per-
form parallel execution on the collapsed loop. The XOMP runtime incorporates
the CUDA runtime to allocate 16 thread blocks and each has 128 GPU threads.
Given 32 registers for each GPU thread, this achieves a 100% theoretical occu-
pancy in each GPU SMX. Collapsing with two-level or three-level loops both can
exploit the significant number of threads in a SMX. Compared with the baseline
GPU implementations, there are about 5× and 10× speedups delivered for the
LB and CNS applications respectively (shown in Fig. 5 and Fig. 6).

Multidimensional thread structure An alternative option to increase par-
allelism is using the multidimensional thread structure supported in CUDA
so that threads can be identified using a one-dimensional, two-dimensional, or
three-dimensional thread index, forming a one-dimensional, two-dimensional, or
three-dimensional thread block. The OpenMP 4.0 standard provides the teams
directive with optional num teams() and thread limit() clauses to support a two-
level thread hierarchy. The thread teams and their threads can be mapped to
a two-dimensional thread structure in CUDA. In the LB application, we can
seamlessly allocate 32 × 32 threads to update the two innermost loops in the
three-level nested loop and have 32 thread blocks mapped to the outermost loop
(only two thread blocks can run concurrently due to the limitation). This can
achieve 100% occupancy in the execution if only 32 registers are given to each
GPU thread. In the CNS application, we can have the same allocation if ghost cells
are not involved in the computation. Otherwise, the loop iteration size becomes
40 (32 and 4 ghost cells in both sides) in the three-level nested loop. To fulfill
the CUDA limitation discussed earlier, we allocate only 40 threads in a thread
block and have multiple thread blocks mapped to the loop iteration space (but
only up to 16 concurrent thread block executions). This configuration has lower
theoretical occupancy (50%) and the computation is inefficient due to usage of
partial-warp. The performance is reported in histograms marked with multi-dim
threadblock in Fig. 5 and Fig. 6. Compared with the collapsing variants, a 1.5×
speedup in overall computation time is achieved in the LB application but the
CNS application showed a minimal difference.

4.5 Loop Scheduling

OpenMP supports multiple loop scheduling policies, including static, dynamic,
guided, auto, and runtime. For regular loops running on CPUs, statically and
evenly dividing loop iterations among threads using a schedule(static) clause
(referred to as static-even schedule in this paper) often leads to the best perfor-
mance with minimal scheduling overhead. GPUs have much more threads and
unique memory access characteristics. On the K20X GPU, every successive 128

Experiences of OpenMP Accelerator for DOE Stencil Applications 11

bytes (32 single precision words) memory can be accessed by a GPU warp (32
consecutive threads) in a single transaction. The static-even schedule will have
one GPU thread accessing multiple successive words in memory and lead to
multiple memory transactions. A round-robin scheduling using schedule(static,1)
will fulfill the need to perform coalesced memory access on the GPU device.
Applying the baseline GPU implementation and two collapsing variants with
the round-robin scheduling, performance reports show modest improvement for
total execution time in the CNS application (1%) and a larger improvement in
the the LB application (2.8×). Compared only the kernel execution times in the
CNS application, round-robin scheduling delivers the highest 76% improvement
in one kernel in the hypterm function and an average of 26.4% improvement
for all kernels. The performance analysis reports high overhead caused by mem-
ory movement between the host and device memories. We then take the best-
performed variants in both applications (collapsed in two level with round-robin
scheduling) to implement optimizations in the following steps.

4.6 Exploiting Memory Hierarchy

Like many other types of accelerators, Nvidia GPUs provide multiple specialized
memories, including on-chip software controllable cache shared within a thread
block (referred to as shared memory) and constant memory accessible by all
threads for read-only global data. The current OpenMP 4.0 lacks support to
exploit the specialized memories. We propose to extend the OpenMP Accelerator
Model to have a cache clause to allow users to hint such opportunities. The
clause has a form of cache (var list), in which each variable listed can be further
prepended by an optional const modifier. For example cache (array1[0:10], const
array2[5:10]) tells the compiler that there are two arrays which should be cached
in the memory hierarchy of the accelerator. One of the arrays is a read-only
subarray. Similar to the map clause, the cache clause can only be used with
target or target data directives. Variables shown in the cache clause must also
show up in the map clause affecting the same code region. With this clause,
compilers translate the code to exploit either shared memory or constant memory
of GPUs.

In the LB application, there are several values and arrays that can be as-
signed to the constant memory space on a GPU device. Those include constant
coefficients, stride distances (stride over s component or stride over a Fab), an
array storing discrete velocity directions and an array storing weights. The CNS

application has relatively low constant data referenced by multiple functions.
Variables passed into the three main computing functions (ctoprim, hypterm,
and diffterm) are the data pointers and the upper bound and lower bound of
each box structure. Those are only available by retrieving them from the data
abstraction and are not suitable to be stored inside the constant memory space.
Therefore, no constant memory usage appears in the CNS application. Fig. 7a ex-
tracts the comparison (execution time includes memory copying overhead) with
only two kernels in the LB application to demonstrate the performance with con-
stant memory usage. A 1.32× speedup is achieved for the overall execution time

12 Pei-Hung Lin, Chunhua Liao, Daniel J. Quinlan, and Stephen Guzik

from the implementation with constant memory. Higher speedups, form 1.74× to
2.44×, are observed in the execution times for these three functions individually.

The LB application uses a zero-point stencil and the CNS application uses a 25-
point stencil in the 3D computation, or 9-point stencil if we split computations in
three different dimensions. Data represented in a grid cell in the CNS application
is referenced multiple times by its neighboring grid cells. A potential to have
high performance can be achieved by caching such data in the cache memory,
or staged in a temporary buffer with high bandwidth and low latency. The
configurable on-chip memory on the GPU device can serve as a L1 cache or
shared memory. Stencil data can therefore be stored in the on-chip memory
space to gain the benefit of the fast memory. By default, the CUDA programming
model tries to cache data fetch into L1 through an implicit memory management.
In this experiment, we configure the high capacity in the on-chip memory as a
shared memory space to have explicit control of the on-chip memory usage.
The primary use of shared memory is to provide inter-thread communication,
to cache data to avoid redundant global memory access, and improve global
memory access patterns. Multiple threads request the same data element and
then generate a significant number of global memory access. To exploit the shared
memory space, we can stage the loads in the shared memory space. Only one
compulsory global memory access is then required for each data element, the
rest of the loads can fetch directly from shared memory with short latency and
high bandwidth. However, the implementation needs to pay attention to the
memory access pattern to avoid overhead caused by bank conflicts in shared
memory. Careless usage of shared memory can also lead to low GPU occupancy
and result in low computation performance.

Six kernels (3 in Hypterm and 3 in Diffterm) in the GPU implementation
involve the 1D 9-point stencil computation. 40 threads grouped in a thread block
will perform computations for grid cells in a 1D array. Data content represented
in each grid cell for the Hypterm function has 6 double-precision floating point
values and each grid cell in Diffterm function requires 11 double-precision float-
ing point values. Table 2 shows details in required shared memory size, thread
assignment and the achievable highest GPU occupancy. This implementation
doesn’t deliver higher performance compared to our earlier implementation with
the best performance (shown in Fig. 7b). The main cause is a much lower GPU
occupancy due to low thread number in each thread block. To increase the ac-
tive thread number in each thread block, loop tiling can be performed to tile
multiple iterations in the loop for the second dimension in the 3D nested loop.
More threads can be assigned into a thread block but it also proportionally in-
creases the required shared memory size for each thread block. Table 2 shows
the changes in GPU occupancy by tiling both kernels with different tiled sizes.
With a large tile size, occupancy is limited by the allowed shared memory size
(48KB in the configuration). Exploiting shared memory in the CNS application
does not deliver the best performance. It would require other optimizations to
achieve efficient shared memory usage.

Experiences of OpenMP Accelerator for DOE Stencil Applications 13

Table 2: Shared memory usage and GPU occupancy
Shared memory report

Kernel size/block (byte) threads/ block Occupancy

Hypterm 1920 40 50%
Tiled 2 3840 80 56%
Tiled 3 5760 120 50%
Tiled 4 7680 120 47%

Diffterm 3520 40 41%
Tiled 2 7040 80 28%
Tiled 3 10620 120 25%
Tiled 4 14080 160 23%

(a) LB performance with constant memory(b) CNS performance with shared memory

Fig. 7: Optimization in memory hierarchy

4.7 Reducing memory movement between host and device

The performance tool reports a significant portion of data copying between the
host memory and device memory in all the GPU implementations described
above. Several variables and arrays are copied repetitively to the GPU’s mem-
ory in different kernels. Using target data directives with map clauses can usually
reduce repetitive memory allocations and transferring. However, we found that
this is not a trivial task for the two chosen applications due to language restric-
tions.

OpenMP 4.0 defines a set of restrictions for variables listed in the map clause,
such as 1) data must have a complete type for C/C++ , 2) a variable that is part
of another variable (e.g. a field of a struct) is not allowed unless it is an array
element or array section, 3) C++ class types mapped must not contain static
data or virtual members, and 4) pointer types are allowed but the memory block
to which the pointer refers is not mapped. Chombo (used in LB application) and
BoxLib (used in CNS application) share a data structure called Fortran array
box (Fab). Fab is a structure of array that can store multiple components and it
provides a high-level data abstraction. Information such as loop bounds, stencil
size, and data pointer to the component array are packaged inside the Fab.
Members in Fab contain primitive array, scalar variables, and a few static data.

14 Pei-Hung Lin, Chunhua Liao, Daniel J. Quinlan, and Stephen Guzik

An ideal strategy in the porting process is to copy the entire Fab structure to
the GPU’s memory space and extract information directly from the Fab stored
in GPU memory. However, the Fab structure is not be a mappable according to
OpenMP 4.0. A workaround task is extracting and storing all the members in
Fab in primitive arrays. Then the temporary arrays can be mapped and copied
to the GPU memory. This will involve significant modification in the codes for
our chosen applications, and for other scientific applications. We discuss this
approach in the paragraph that describes manual optimization.

4.8 Manual tuning for GPU’s performance

There are manual implementations for both LB and CNS applications to evaluate
the achievable performance through manual performance tuning. The manual
implementations serve as references to study the transformation obstacles in the
design of OpenMP accelerator model. Several manual optimizations require good
understanding in the application design to perform code modifications and they
are not implemented as automatic transformations in this study.

The manual-tuned GPU implementation for the LB application was imple-
mented by a coauthor and the tuning process significantly simplifies the Fab
structure, restructures the code, and consolidates all the memory copying. Other
optimizations include hand-tuned kernels (including BoxLib’s exchange func-
tion), exploiting constant memory, and several code modifications specifically
for GPU implementation. Data is allocated and copied to GPU memory once
and reused by all the kernels listed in the pseudo code in Fig. 3a. This optimized
implementation delivers the best performance among both the CPU’s and GPU’s
implementations (shown in Fig. 5).

The manual tuning process for the CNS application focuses on minimizing
memory copying between host and device, exploiting efficient usage of shared
memory, and maximizing GPU occupancy without partial warp utilization. A
43 thread block is chosen based on the ghost cell size in the computation to
avoid the partial warp usage that appears in the implementation with OpenMP
accelerator model. This thread block configuration also simplifies the subscript
computation when exploiting the shared memory in the execution. The code
was modified to have only limited memory transfers between host memory and
device memory. All initialized data stored in the Fab data structure is copied
to the device memory before the computation. There are infrequent data move-
ments which send only a subset of computed data back to the host memory
for boundary exchange performed by BoxLib library and visualization dumps.
The manual code delivers the best GPU performance with about 6× speedup
compared to the best implementation with OpenMP accelerator model (shown
in Fig. 6). However, the delivered performance from GPU is not superior than
the performance on CPU. The performance profiling result shows a compulsory
overhead in allocating, copying and freeing memory on the GPU. Eliminating
those overhead for the CNS application, the GPU execution time for the three
kernels is at a comparable level to the CPU execution time.

Experiences of OpenMP Accelerator for DOE Stencil Applications 15

5 Related Work

High-level directive-based programming models, such as OpenMP 4.0 and Ope-
nACC, are becoming promising choices for developers to exploit heterogeneous
platforms without compromising productivity. Many previous studies [17,8,11,9]
have evaluated the performance and productivity of OpenACC using a range
of kernels or applications. For example, Wienke et al. [17] presented their ex-
periences with OpenACC using two real-world applications. OpenACC helped
them reach 80% of the best-effort OpenCL version in a moderately complex sim-
ulation kernel. They reported that the lack of ability to exploit local memory
of GPUs could contribute to the loss of performance of other complex Ope-
nACC applications. Herdman et al. [8] used a hydrodynamics mini-application
to compare OpenACC, OpenCL and CUDA. They found that OpenACC was
extremely viable. However, their OpenCL and CUDA versions were not opti-
mized. Hoshino et al. [9] used both kernels and a real-world computational fluid
dynamics applications to compare CUDA and OpenACC. They reported that
some complex Fortran data types such as arrays of derived types and derived
types with variable-length arrays are not supported by OpenACC, but exten-
sively used in the code. Manual code changes were used to copy arrays out of
complex objects into simpler arrays. Levesque et al. [11] used combination of
OpenMP and OpenACC to port S3D. Significant code restructuring efforts were
used to raise the level of parallelism, overlap computation and communication,
and reduce memory operations.

The application experience of using the OpenMP accelerator support is rare
due to the lack of compiler support. Silva et al. [18] compared OpenACC and
OpenMP for accelerator computing. A set of parallel programming patterns,
not real applications, were used to compare language features. No performance
experiments were done due to the lack of compiler support. Unat et al. [16] pre-
sented a domain-specific OpenMP-like programming model for stencil methods.
For small kernels, they realized up to 80% of the performance of optimized CUDA
versions. Our work provides the first study of the performance and programma-
bility of the OpenMP accelerator model using the HOMP compiler [12] and two
non-trivial DOE scientific applications. To support software-managed or hard-
ware caches available on accelerators, OpenACC [5] provides a cache (var list)
directive to suggest to the OpenACC implementation to fetch the listed variables
into the highest level of the cache. However, this directive may only appear inside
loops. By contrast, our proposed cache() is a clause which can be used with one
or multiple code regions (when used with target data). Besides leveraging the
highest level of cache, the additional const modifier in our design can indicate
the read-only semantics to exploit constant memory.

6 Discussion & Future Work

Based on our experiments, we have found that the OpenMP Accelerator Model
is a productive approach to porting existing applications to GPUs. The port-
ing strategy can be straightforward. Users should prepare a baseline OpenMP

16 Pei-Hung Lin, Chunhua Liao, Daniel J. Quinlan, and Stephen Guzik

version running on CPUs. Then the target directive can be inserted around par-
allel regions. There are only a limited set of accelerator directives and clauses in
OpenMP 4.0 to improve parallelism, scheduling, and data reuse, among others.
So a simple process is to incrementally apply them one by one to see the effect,
guided by performance analysis tools.

However, real applications pose unique challenges to productively apply directive-
based programming models. 1) A real scientific application often has complex
data types which may not be supported by the language specifications. This can
be very problematic since the data types may be extensively used in the code. A
common workaround is to manually copy a portion of the complex data object
into a variable of a simpler, supported type. It should be possible to design a
directive or clause to aid this process and vastly improve the productivity. 2) An
application may have non-perfectly nested loops, which can be a candidate for
collapsing after simple transformations. One possible way to improve produc-
tivity is to extend the collapse(n) clause to accept a flag, like collapse(n:force),
to force collapsing across multiple non-perfectly nested loops when applicable.
Compilers could simply move all statements between loops into the innermost
loop body to form a perfectly nested loop. Users have to ensure the correctness
of the code movements. 3) Large-scale DOE applications usually leverage many
third-party libraries to increase productivity. Porting such an application may
involve porting the underneath libraries to achieve more coverage. However, the
complexity of libraries can be a significant barrier to such a porting effort. 4) In
an ideal world, users should be able to simply insert directives into existing codes
to port to new platforms. However, non-trivial code restructuring may be needed
to expose the right granularity of parallelism. 5) Our attempt to exploit special
caches on GPUs generated some interesting results. The cache () extension we
propose is intuitive, flexible and compatible with existing directives. Using con-
stant memory for LB resulted in significant performance improvements. On the
other hand, using shared memory for CNS does not deliver higher performance
in our study. The required shared memory space to stage temporary results in
stencil computation will increase proportionally to the GPU thread block size.
The intuitive implementation to exploit shared memory can easily lead to a
much lower parallelism on GPU execution. Additional analysis and optimization
support will be helpful to achieve efficient shared memory utilization in stencil
applications running on GPU device.

In the future, we plan to explore several research directions: 1) testing ex-
tensions to help port complex data types and non-canonical control structures
(e.g. non-perfectly nested loops). 2) using more types of scientific applications,
such as adaptive mesh refinement and molecular dynamics, to find improvements
to the directive-based programming models, 3) further investigation of ways of
exploiting shared memory for better performance in real applications, 4) explor-
ing extensions to intuitively and flexibly express semantics related to managing
multiple accelerator devices.

Experiences of OpenMP Accelerator for DOE Stencil Applications 17

References

1. BoxLib. https://ccse.lbl.gov/BoxLib/

2. China’s Tianhe-2 Supercomputer Retains Top Spot on 43rd Edition of the TOP500
List. http://www.top500.org/blog/lists/2014/06/press-release/

3. CUDA Zone – The resource for CUDA developers, http://www.nvidia.com/cuda

4. Nvidia visual profiler. WWW page, https://developer.nvidia.com/nvidia-visual-
profiler

5. OpenACC: Directives for Accelerators, http://www.openacc-standard.org/

6. Chen, S., Doolen, G.D.: Lattice Boltzmann method for fluid flows. Annu. Rev.
Fluid Mech. 30, 329–364 (1998)

7. Colella, P., Graves, D.T., Keen, N., Ligocki, T.J., Martin, D.F., McCorquodale, P.,
Modiano, D., Schwartz, P., Sternberg, T., , Straalen, B.V.: Chombo software pack-
age for amr applications - design document. Tech. rep., Lawrence Berkeley National
Laboratory (2009), https://seesar.lbl.gov/anag/chombo/ChomboDesign-3.1.

pdf

8. Herdman, J., Gaudin, W., McIntosh-Smith, S., Boulton, M., Beckingsale, D.,
Mallinson, A., Jarvis, S.: Accelerating Hydrocodes with OpenACC, OpeCL and
CUDA. In: High Performance Computing, Networking, Storage and Analysis
(SCC), 2012 SC Companion:. pp. 465–471 (Nov 2012)

9. Hoshino, T., Maruyama, N., Matsuoka, S., Takaki, R.: CUDA vs OpenACC: Per-
formance Case Studies with Kernel Benchmarks and a Memory-Bound CFD Appli-
cation. In: Cluster, Cloud and Grid Computing (CCGrid), 2013 13th IEEE/ACM
International Symposium on. pp. 136–143 (May 2013)

10. Khronos OpenCL Working Group: The OpenCL Specification - Version 1.0. Tech.
rep., The Khronos Group (2009)

11. Levesque, J.M., Sankaran, R., Grout, R.: Hybridizing S3D into an Exascale Appli-
cation Using OpenACC: An Approach for Moving to Multi-petaflops and Beyond.
In: Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis. pp. 15:1–15:11. SC ’12, IEEE Computer So-
ciety Press, Los Alamitos, CA, USA (2012), http://dl.acm.org/citation.cfm?
id=2388996.2389017

12. Liao, C., Yan, Y., de Supinski, B.R., Quinlan, D.J., Chapman, B.: Early Experi-
ences with the OpenMP Accelerator Model. In: OpenMP in the Era of Low Power
Devices and Accelerators (IWOMP’13), pp. 84–98. Springer (2013)

13. Olschanowsky, C., Guzik, S.M.J., Loffeld, J., Hittinger, J., Strout, M.M.: A study
on balancing parallelism, data locality, and recomputation in existing PDE solvers.
In: The International Conference for High Performance Computing, Networking,
Storage and Analysis (2014)

14. OpenMP Architecture Review Board: The OpenMP API Specification for Parallel
Programming. http://www.openmp.org/

15. Quinlan, D.J., et al.: ROSE compiler project. http://www.rosecompiler.org/

16. Unat, D., Cai, X., Baden, S.B.: Mint: Realizing CUDA Performance in 3D Stencil
Methods with Annotated C. In: Proceedings of the international conference on
Supercomputing. pp. 214–224. ICS ’11, ACM, New York, NY, USA (2011)

17. Wienke, S., Springer, P., Terboven, C., an Mey, D.: OpenACC: First Experiences
with Real-world Applications. In: Proceedings of the 18th International Confer-
ence on Parallel Processing. pp. 859–870. Euro-Par’12, Springer-Verlag, Berlin,
Heidelberg (2012), http://dx.doi.org/10.1007/978-3-642-32820-6_85

18 Pei-Hung Lin, Chunhua Liao, Daniel J. Quinlan, and Stephen Guzik

18. Wienke, S., Terboven, C., Beyer, J., Mller, M.: A Pattern-Based Comparison of
OpenACC and OpenMP for Accelerator Computing. In: Silva, F., Dutra, I., San-
tos Costa, V. (eds.) Euro-Par 2014 Parallel Processing, Lecture Notes in Com-
puter Science, vol. 8632, pp. 812–823. Springer International Publishing (2014),
http://dx.doi.org/10.1007/978-3-319-09873-9_68

